k近邻算法 学习
源代码
from numpy import *
import operator
def createDataSet():
group = array([[1.0, 1.1], [1.0,1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedclassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedclassCount[0][0]
groups, labels = createDataSet()
print classify0([0.5, 0.5], groups, labels,3)
先记下,以后学习